
MetaQuant: Learning to Quantize by Learning to
Penetrate Non-differentiable Quantization

Shangyu Chen
Nanyang Technological University, Singapore

schen025@e.ntu.edu.sg

Wenya Wang
Nanyang Technological University, Singapore

wangwy@ntu.edu.sg

Sinno Jialin Pan
Nanyang Technological University, Singapore

sinnopan@ntu.edu.sg

Abstract

Tremendous amount of parameters make deep neural networks impractical to be
deployed for edge-device-based real-world applications due to the limit of compu-
tational power and storage space. Existing studies have made progress on learning
quantized deep models to reduce model size and energy consumption, i.e. convert-
ing full-precision weights (r’s) into discrete values (q’s) in a supervised training
manner. However, the training process for quantization is non-differentiable, which
leads to either infinite or zero gradients (gr) w.r.t. r. To address this problem, most
training-based quantization methods use the gradient w.r.t. q (gq) with clipping
to approximate gr by Straight-Through-Estimator (STE) or manually design their
computation. However, these methods only heuristically make training-based
quantization applicable, without further analysis on how the approximated gra-
dients can assist training of a quantized network. In this paper, we propose to
learn gr by a neural network. Specifically, a meta network is trained using gq
and r as inputs, and outputs gr for subsequent weight updates. The meta network
is updated together with the original quantized network. Our proposed method
alleviates the problem of non-differentiability, and can be trained in an end-to-end
manner. Extensive experiments are conducted with CIFAR10/100 and ImageNet
on various deep networks to demonstrate the advantage of our proposed method in
terms of a faster convergence rate and better performance. Codes are released at:
https://github.com/csyhhu/MetaQuant

1 Introduction

Deep neural networks have shown promising results in various computer vision tasks. However,
modern deep learning models usually contain many layers and enormous amount of parameters [9],
which limits their applications on edge devices. To reduce parameters redundancy, continuous effects
in architecture refinement have been made, such as using small kernel convolutions [14] and reusing
features [6]. Consider a very deep model which is fully-trained. To use it for making predictions,
most of the computations involve multiplications of a real-valued weight by a real-valued activation
in a forward pass. These multiplications are expensive as they are all float-point to float-point
multiplication operations. To alleviate this problem, a number of approaches have been proposed to
quantize deep models. Courbariaux et al. [4] and Hubara et al. [7] proposed to binarize weights of the
deep model to be in {±1}. To provide more flexibility for quantized values in each layer, Rastegari et
al. [13] introduced a float value αl known as the scaling factor for layer l to turn binarized weights

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

into αl × {±1}. Li et al. [11] extended binary weights to ternary values, and Zhou et al. [17] further
incorporated activation and gradient quantization.

Training-based quantization methods generate quantized neural networks under the training mech-
anism. Existing training-based quantization methods can be roughly categorized into “STE” and
“Non-STE” methods. “STE” methods contain a non-differentiable discrete quantization function,
connecting the full-precision weights and quantized weights. During backpropagation, STE is used
to penetrate this non-differentiable function. (e.g.[7], [13], [17]). “Non-STE” methods are referred to
as learning without STE by directly working on full-precision weights with a regularizer to obtain
feasible quantization ([2]) or weights projection using proximal gradient methods ([10], [5]). The
training process in Non-STE quantization suffers from heavy hyper-parameters tuning, such as
weights partition portion in each step [15] and penalty setting in [10].

Specifically, STE quantization methods follow a rather simple and standard training protocol. Given
a neural network f with full-precision weights W, a quantization function Q(·) (without loss of
generalization, Q(r) is set as a mapping from r to 1 if r ≥ 0, otherwise −1), and labeled data
(x, y), the objective is to minimize the training loss: `(f(Q(W);x), y). However, due to the
non-differentiability of Q, the gradient of ` w.r.t W cannot be computed using the chain rule:
∂`
∂W = ∂l

∂Q(W)
∂Q(W)
∂W , where ∂Q(W)

∂W is infinite when W = 0 and 0 elsewhere. To enable a stable
quantization training, Hubara et al. [7] proposed Straight-Through-Estimator (STE) to redefine
∂Q(r)
∂r :

∂Q(r)

∂r
=

{
1 if |r| ≤ 1,

0 otherwise.
.

STE is widely used in training-based quantization methods1 as it provides an approximated gradient
for penetration of Q with an simple implementation. However, it inevitably brings the problem of
gradient mismatch: the gradients of the weights are not generated using the value of weights, but
rather its quantized value. Although STE provides an end-to-end training benifit under discrete
constraints, few works have progressed to investigate how to obtain better gradients for quantization
training. In the methods HWGQ [3] and Bi-real [12], ∂Q(r)

∂r is manually defined, but they focused on
activation quantization.

To overcome the problem of gradient mismatch and explore better gradients in training-based methods,
inspired by [1], we propose to learn ∂Q(W)

∂W by a neural network (M) in quantization training. This
additional neural network is referred to as meta quantizer and trained together with the base quantized
model. The whole process is denoted by Meta Quantization (MetaQuant). Specially, in each
backward propagation, M takes ∂`

∂Q(W) and W as inputs in a coordinate-wise manner, then its
output is used to compute ∂`

∂W for updating weights W using common optimization methods such
as SGD or Adam [8]. In a forward pass, inference is performed using the quantized version of
the updated weights, which produces the final outputs to be compared with the ground-truth labels
for backward computation. During this process, gradient propagation from the quantized weights
to the full-precision weights is handled byM, which avoids the problem of non-differentiability
and gradient mismatch. Besides, the gradients generated by the meta quantizer are loss-aware,
contributing to better performance of the quantization training.

Compared with commonly-used STE and manually designed gradient propagation in quantization
training, MetaQuant learns to generate proper gradients without any manually designed knowledge.
The whole process is end-to-end. meta quantizer can be viewed as a plug-in to any base model, making
it easy and general to be implemented in modern architectures. After quantization training is finished,
meta quantizer can be removed and consumes no extra space for inference. We compare MetaQuant
with STE under different quantization functions (dorefa [17], BWN [13]) and optimization techniques
(SGD, Adam) with CIFAR10/100 and ImageNet on various base models to verify MetaQuant’s
generalizability. Extensive experiments show that MetaQuant achieves a faster convergence speed
under SGD and better performance under SGD/Adam.

1In the following description, training-based quantization refers to STE training-based quantization

2

2 Related Work

Courbariaux et al. [4] proposed to train binarized networks through deterministic and stochastic
rounding on parameters update after backpropagation. This idea was further extended in [7] and
[13] by introducing binary activation. Nevertheless, these pioneer attempts face the problem of
non-differentiable rounding operator during back-propagation, which is solved by directly penetration
of rounding with unchanged gradient. To bypass non-differentiability, Leng et al. [10] modified the
quantization training objective function using ADMM, which separates the processes on training real-
valued parameters and quantizing the updated parameters. Zhou et al. [15] proposed to incrementally
quantize a portion of parameters based on weight partition and update the un-quantized parameters
by normal training. However, this kind of methods introduced more hyper-parameters tuning such
as determining the procedure of partial quantization, thus complicating quantization. Bai et al. [2]
added a regularizer in quantization training to transform full-precision weights to quantized values.
Though this method simplifies quantization training procedure, but its optimization process involves
the proximal method, which makes the training cost expensive.

3 Problem Statement

Given a training set of n labeled instances {x, y}’s, a pre-trained full-precision base model f with
L layers is parameterized by W = [W1, ...,WL]. We define a pre-processing function A(·) and a
quantization function Q(·). A(·) converts W into W̃, which is rescaled and centralized to make it
easier for quantization. Q(·) discretizes W̃ to Ŵ using k-bits. Specially, 2 pre-processing functions
and corresponding quantization methods (dorefa2, BWN) are studied in this work:

dorefa : W̃=A(W)=
tanh(W)

2max(|tanh(W)|)
+

1

2
, Ŵ=Q(W̃)=2

round
[
(2k − 1)W̃

]
2k − 1

−1. (1)

BWN : W̃ = A(W) = W, Ŵ = Q(W̃) =
1

n
||W̃||l1 × sign(W̃). (2)

Training-based quantization aims at training a quantized version of W, i.e., Ŵ, such that the loss of
the quantized f is minimized: minŴ `(f(Ŵ;x), y).

4 Meta Quantization

4.1 Generation of Meta Gradient

Our proposed MetaQuant incorporates a shared meta quantizerMφ parameterized by φ across layers
into quantization training. After W is quantized as Ŵ (subscript l is omitted for ease of notation), a
loss ` is generated by comparing f(Ŵ;x) with the ground-truth.

In back-propagation, the gradient of ` w.r.t Ŵ is then computed by chain rules, which is denoted by
gŴ = ∂`

∂Ŵ
. The meta quantizerMφ receives gŴ and W̃ as inputs, and outputs the gradient of `

w.r.t. W̃, denoted by gW̃, as:

gW̃ =
∂`

∂W̃
=Mφ(gŴ,W̃). (3)

The gradient gW̃ is further used to compute the gradient of ` w.r.t. W, denoted by gW, where gW is
computed via:

gW =
∂`

∂W̃

∂W̃

∂W
= gW̃

∂W̃

∂W
=Mφ(gŴ,W̃)

∂W̃

∂W
, (4)

where ∂W̃
∂W depends on the pre-processing function between W and W̃: ∂W̃

∂W = 1−tanh2(W)
max(|tanh(W)|) for

dorefa according to (1), and ∂W̃
∂W = 1 for BWN according to (2). This process is referred to as

calibration.
2In this work, we only consider the forward quantization function for weights quantization used in [17], and

denote it as “dorefa”

3

Figure 1: The overflow of MetaQuant. During backward propagation, gradients are represented as
blue line. Dash blue line means this propagation is non-differentiable and requires special handling.
A shared meta networkM is constructed which takes gŴ and W̃ as input, and outputs the gradient
of W̃ (gW̃). With gW̃, the gradient of the weights W can be computed using (4). Finally, W is
updated with (5), with the assistance of different optimization methods reflected in π(·).

Before using gW to update W, gW is firstly processed according to different optimization methods
to produce the final update value for each weight. This process is named gradient refinement, which
is denoted by π(·) in the sequent. Specifically, for SGD, π(gW) = gW. For other optimization
methods such as Adam, π(·) can be implemented as π(gW) = gW + residual, where “residual” is
computed according to different gradient refinement methods. Finally, the full-precision weights W
is updated as:

Wt+1 = Wt − απ(gtW), (5)

where t denotes the t-th training iteration and α is the learning rate. Fig.1 illustrates the overall
procedure of MetaQuant.

Compared with [1], which directly learns gW, MetaQuant construct a neural network to learn gW̃,
which cannot be directly computed in quantization training due to the property of non-differentiability
of the quantization functions. Our work resolves the issue of non-differentiability and is general to
different optimization methods. Insight of how and why MetaQuant works is studied at Appendix.7.2.

4.2 Training of Meta Quantizer

Figure 2: Incorporation of meta quantizer into
quantization training. ∆W is composed of cal-
ibration, gradient refinement and multiplication
of learning rate α. Output of meta quantizer is
involved in W’s update and contributes to final
loss, constructing a differential path from loss to
φ-parameterized meta quantizer.

Similar to [1], our proposed meta quantizer is a
coordinate-wise neural network, which means
that each weight parameter is processed inde-
pendently. For a single weight index i in gŴi

,
W̃i receives its corresponding gradient gW̃i

via
gW̃i

= Mφ(gŴi
,W̃i). For efficient process-

ing, during inference, the inputs in (3) are ar-
ranged as batches with size 1. Specially, suppose
W comes from a convolution layer with shape
Ro×i×k×k, where o, i and k denote the number
of output channels, input channels and kernel
size, respectively. Then W̃, Ŵ and the corre-
sponding gradient share the same shape, which
is a reshaping of inputs in (3) to R(o×i×k2)×1.

Recall from (5) and (4), the output ofMφ is in-
corporated into the value of updated Wt, which
is then quantized in next iteration’s inference.

4

Therefore,Mφ is associated to the final quantization training loss, which receives gradient update on
φ backpropagated from the final loss. By introducing the meta quantizer to produce gW̃, MetaQuant
not only addresses the non-differentiability issue for parameters in the base model, but also provides
an end-to-end training benefit throughout the whole network. Moreover, the meta quantizer is loss-
aware, hence it is trained to generate more accurate update for W for reducing the final loss, which
explores how gradient can be modified to assist quantization training. Figure.2 illustrates the detailed
process when incorporating the meta quantizer into the quantization training of the base model, which
forms a differentiable path from the final loss to φ. In the meantime of quantization training in W, φ
is also learned in each training iteration t:

Forward: W̃t = A(Wt) = A

[
Wt−1 − α× π(Mφ(gt−1

Ŵ
,W̃t−1)

∂W̃t−1

∂Wt−1)

]
, (6)

Loss = `
(
f
[
Q(W̃t);x

]
, y
)
, (7)

Backward:
∂`

∂φt
=

∂`

∂W̃t

∂W̃t

∂φt
=Mφ(gŴt ,W̃

t)
∂W̃t

∂φt
. (8)

In Forward, we use a combination of Wt−1 and meta gradient to represent Wt, in order to incorporate
Mφ. Specially in (6), meta gradient is derived fromM’s output, which is firstly multiplied to achieve
gradient of W, then is refined by optimization π. Finally, it is adjusted by learning rate to become
meta gradient. (8) calculates gradient of φ, here ∂W̃

∂φ is differentiable because A is differentiable.
Furthermore, a differentiable meta neural network is chosen. Wt will be actually updated after
Backward, which can be regarded as late weights update.

4.3 Design of Meta Quantizer

The meta quantizerMφ is a parameterized and differentiable neural network to generate the meta
gradient. It can be viewed as a generalization of STE. For example,Mφ reduces to STE if it clips
gW̃ according to the absolute magnitude of W̃: gW̃ =Mφ(gŴ,W̃) = gŴ · 1|W̃|≤1.

We design 3 different architectures of the meta quantizer. The first architecture simply uses a neural
network composing of 2 or multiple layers of fully-connected layer. It only requires gŴ as input:

FCGrad : Mφ(gŴ) = FCs(φ, σ, gŴ), (9)

where σ represents the nonlinear activation. Since previous successful experimental results brought
by STE show that a good gW̃ should be generated by considering the value of W̃. Based on this
observation, we construct another 2 architectures of meta quantizer with W̃ fed as input and multiply
the output of these neural networks with gŴ to incorporate gradient information from its subsequent
step. Specifically, one is based on fully-connected (FC) layers:

MultiFC : Mφ(gŴ,W̃) = gŴ · FCs(φ, σ,W̃). (10)

Another network incorporates LSTM and FC to constructM, which is inspired by [1] that uses
memory-based neural network as the meta learner:

LSTMFC : Mφ(gŴ,W̃) = gŴ · FCs(φFCs, σ, (LSTM(φLSTM ,W̃))). (11)

When using LSTM as the meta quantizer, each coordinate of the weights keeps a track of the hidden
states generated by LSTM, which contains the memory of historical information of gŴ and W̃. Meta
quantizer’s memory consumption and detailed hyper-parameter is studied at Appendix.7.1, 7.3.

4.4 Algorithm and Implementation Details

The detailed process of MetaQuant is illustrated in Algorithm 1. A shared meta quantizerMφ is firstly
constructed and randomely initialized. During each training iteration, line 2-6 describes the forward
process: for each layer, gŴ and W̃ from the previous iteration are fed intoMφ to generate the meta
gradient gW̃ to perform inference, as indicated from line 3-5. Since gŴ is not calculated in the first
iteration, normal quantization training is conducted at the first iteration: Ŵ = Q(W̃) = Q [A(W)]

to replace line 4. Line 7-9 shows the backward process: Ŵ’s gradient can be attained through

5

error backpropagation, which is shown in line 7. During the backward process, gŴ and W̃ of the
current iteration are obtained and their outputs from Mφ are saved for computation in the next
iteration, denoted by gW̃t+1 as described in line 7-8. By incorporatingMφ into the inference graph,
its gradient is obtained in line 9. Finally, gW̃ is used to calculate gW, which is then processed by
different optimization methods using π(·), leading to the update of W shown in line 10-12. In the
first iteration, due to the lack of gW̃, weights update of W is not conducted. Note that φ from the
meta quantizer is updated in line 13.

Algorithm 1 MetaQuant
Require: Training dataset {x, y}n, well-trained full-precision base model W.
Ensure: Quantized base model Ŵ.
1: Construct shared meta quantizerMφ, training iteration t = 0.
2: while not optimal do
3: for Layer l from 1 to L do

4: Ŵt
l = Q(W̃t

l) = Q

{
A
[
Wt−1

l − α× π(Mφ(g
t−1

Ŵl
,W̃t−1

l) · ∂W̃
t−1
l

∂Wt−1
l

)

]}
5: end for
6: Calculate loss: ` = Loss

{
f
[
Q(W̃t);x

]
, y
}

7: Generate gŴt using chain rules.
8: Calculate meta gradient gW̃t usingMφ.
9: Calculate ∂`

∂φt by (8)
10: for Layer l from 1 to L do
11: Wt

l = Wt−1
l − α× π(Mφ(g

t−1

Ŵl
,W̃t−1

l) · ∂W̃
t−1
l

∂Wt−1
l

)

12: end for
13: φt+1 = φt − γ × ∂`

∂φt (γ is the learning rate of the meta quantizer)
14: t = t+ 1
15: end while

5 Experiment

5.1 Experiment Setup

MetaQuant focuses on the penetration of non-differentiable quantization function during training-
based methods. We conduct comparison experiments with STE under the following 2 forward
quantization methods: 1) dorefa [17] , 2) BWN [13] and 2 optimization methods: 1) SGD 2) Adam
[8]. When quantization training is conducted with dorefa or BWN as forward quantization function
and STE as backward method, it becomes a weight-quantization version of [17] or the proposed
method in [13], respectively. Three benchmark datasets are used including ImageNet ILSVRC-2012
and CIFAR10/100. Regarding deep architectures, we experiment with ResNet20/32/44 on CIFAR10.
Since CIFAR10/100 share the same input dimension, we modify the output dimension of the last
fully-connected layer from 10 to 100 in ResNet56/110 for CIFAR100. For ImageNet, ResNet18 is
utilized for comparison. For all the experiments conducted and compared, all layers in the networks
are quantized using 1 bit: each layer contains only 2 values. For experiments on CIFAR10/100, we set
the initial learning rate as α = 1e−3 for base models and the initial learning rate as γ = 1e−3 for the
meta quantizer. For fair comparison, we set total training epochs as 100 for all experiments, α and γ
will be divided by 10 after every 30 epochs. For ImageNet, the initial learning rate is set as α = 1e−4

for the base model using dorefa and BWN. Initial γ is set as 1e−3. α decreases to {1e−5, 1e−6}
when training comes to 10 / 20 epochs. γ reduces to {1e−4, 1e−5} in accordance to the change of
the learning rate in base models with total epoch as 30. Batch size is 128 for CIFAR/ImageNet. All
experiments are conducted for 5 times, the statistics of last 10/5 epochs’ test accuracy are reported
as the performance of both proposed and baseline methods in CIFAR/ImageNet datasets. We also
demonstrate the empirical convergence speed among different methods through training loss curves.

Detailed hyper-parameters in different realizations of MetaQuant in CIFAR experiments are the
following: In MultiFC, a 2-layer fully-connected layer is used with hidden size as 100, no non-linear
activation is used. In LSTMFC, a 1-layer LSTM and a fully-connected layer are utilized, with the
hidden dimension set as 100. In FCGrad, a 2-layer fully-connected meta model is used with hidden

6

size as 100 without non-linear activation. In ImageNet experiments, we use MultiFC/FCGrad with
2/1-layer fully-connected layer, whose hidden dimension is 100.

5.2 Experimental Results and Analysis

Network Forward Backward Optimization Test Acc (%) FP Acc (%)

ResNet20

dorefa

STE

SGD

80.745(2.113)

91.5

MultiFC 88.942(0.466)
LSTMFC 88.305(0.810)
FCGrad 88.840(0.291)

STE

Adam

89.782(0.172)
MultiFC 89.941(0.068)
LSTMFC 89.979(0.103)
FCGrad 89.962(0.068)

BWN

STE
SGD

75.913(3.495)
LSTMFC 89.289(0.212)
FCGrad 88.949(0.231)

STE
Adam

89.896(0.182)
LSTMFC 90.036(0.109)
FCGrad 90.042(0.098)

ResNet32

dorefa

STE

SGD

82.911(1.680)

92.13

MultiFC 89.637(0.380)
LSTMFC 90.397(0.149)
FCGrad 89.934(0.246)

STE

Adam

90.172(0.077)
MultiFC 90.966(0.064)
LSTMFC 90.948(0.074)
FCGrad 90.976(0.068)

BWN

STE
SGD

79.768(2.062)
LSTMFC 90.568(0.169)
FCGrad 90.241(0.316)

STE
Adam

91.015(0.087)
LSTMFC 91.002(0.077)
FCGrad 91.034(0.067)

ResNet44

dorefa

STE

SGD

86.686(1.020)

93.56

MultiFC 90.546(0.218)
LSTMFC 91.494(0.163)
FCGrad 91.539(0.097)

STE

Adam

91.079(0.064)
MultiFC 91.772(0.073)
LSTMFC 91.870(0.022)
FCGrad 91.989(0.067)

BWN

STE
SGD

82.647(0.334)
LSTMFC 91.498(0.057)
FCGrad 91.614(0.081)

STE
Adam

91.121(0.023)
LSTMFC 91.498(0.271)
FCGrad 92.107(0.059)

Table 1: Experimental result of MetaQuant and STE using dorefa, BWN on CIFAR10

Table.1 shows the overall experimental results on CIFAR10 for MetaQuant and STE using dif-
ferent forward quantization methods and optimizations. Variants of MetaQuant shows significant
improvement over STE baseline, especially SGD is used.

CIFAR100 is a more difficult task than CIFAR10, which contains much more fine-grained classes
with a total number of 100 classes. Table.2 shows the overall experimental results on CIFAR100
for MetaQuant and STE using different forward quantization methods and optimizations. Similar to
CIFAR10, MetaQuant out-performs by a large margin than STE in all cases, showing that MetaQuant
has significant improvement in more challenging tasks than traditional methods.

5.3 Empirical Convergence Analysis

In this experiment, we compare the performances of variants of MetaQuant and STE during the
training process to demonstrate their convergence speeds. ResNet20 using dorefa is utilized as an
example. As Fig.3 shows, under the same task and forward quantization method, MetaQuant shows
tremendous convergence advantage over STE using SGD, including much faster descending speed of
loss and obviously lower loss values. In Adam, although all the methods show similar decreasing

7

Network Forward Backward Optimization Test Acc (%) FP Acc (%)

ResNet56

dorefa

STE

SGD

42.265(8.143)

71.22

MultiFC 65.791(0.415)
LSTMFC 63.645(2.183)
FCGrad 64.351(0.935)

STE

Adam

66.419(0.533)
MultiFC 66.588(0.375)
LSTMFC 66.483(0.793)
FCGrad 66.564(0.351)

BWN

STE
SGD

34.479(11.737)
LSTMFC 63.346(2.253)
FCGrad 64.402(1.434)

STE
Adam

64.297(1.309)
LSTMFC 66.584(0.349)
FCGrad 67.018(0.329)

ResNet110

dorefa

STE

SGD

43.419(18.902)

72.54

MultiFC 68.269(0.136)
LSTMFC 64.753(2.850)
FCGrad 66.145(2.490)

STE

Adam

66.836(1.198)
MultiFC 68.418(0.235)
LSTMFC 67.138(1.286)
FCGrad 68.741(0.363)

BWN

STE
SGD

35.227(19.408)
LSTMFC 66.242(2.979)
FCGrad 64.791(4.096)

STE
Adam

66.265(1.429)
LSTMFC 67.767(1.391)
FCGrad 69.114(0.181)

Table 2: Experimental result of MetaQuant and STE using dorefa, BWN on CIFAR100

Network Forward Backward Optimization FP Top1/Top5(%) Quant Top1/Top5 (%)

ResNet18
dorefa

STE

Adam 69.76/89.08

58.349(2.072)/81.477(1.567)
MultiFC 59.472(0.025)/82.410(0.010)
FCGrad 59.835(0.359)/82.671(0.232)

BWN STE 59.503(0.835)/82.549(0.506)
FCGrad 60.328(0.391)/83.025(0.234)

Table 3: Experimental result of MetaQuant and STE using dorefa, BWN on ImageNet.

0 20 40 60 80 100
epoch

100lo
ss

Baseline
LSTMFC
FC-Grad
MultiFC

(a) SGD

0 20 40 60 80 100
epoch

100

lo
ss

Baseline
LSTMFC
FC-Grad
MultiFC

(b) Adam

Figure 3: Convergence speed of MetaQuant V.S STE using SGD/Adam in ResNet20, CIFAR10,
dorefa.

speed, MetaQuant methods finally reach to lower loss values, which is also reflected in the test
accuracy reported in Table.1. Overall, MetaQuant shows better convergence than STE using different
forward quantizations and optimizations. The improvement is more obvious when SGD is chosen.

8

We conjecture that the performance difference between SGD and Adam is due to the following reason:
SGD simply updates full-precision weights using the calibrated gradient from gW̃, which directly
reflects the output of meta quantizercompared to STE. Adam aggregates the historical information
of gW and normalizes the current gradient, which to a certain degree shrinks the difference of meta
quantizer and STE. More comparisons in training accuracy, test accuracy on more tasks are listed in
Appendix.7.4.

5.4 Performance Comparison with Non-STE Training-based Quantization

Network Method Acc Drop (%) Network Method Acc Drop (%)

ResNet20 ProxQuant 1.29 ResNet32 ProxQuant 1.28
MetaQuant 0.7 MetaQuant 0.39

ResNet44 ProxQuant 0.99 LABNet LAB 1.4
MetaQuant 0.08 MetaQuant -0.2

ResNet18 ELQ 3.55/2.65 ResNet18-2bits TTQ [18] 3.00/2.00
MetaQuant 6.32/4.31 MetaQuant 5.17/3.59

Table 4: Experimental result of MetaQuant V.S ProxQuant, LAB, ELQ, TTQ.

MetaQuant aims at improving training-based quantization by learning better gradients for penetration
of non-differentiable quantization functions. Some advanced quantization methods avoid discrete
quantization. In this section, we compare MetaQuant with Non-STE training-based quantization:
ProxQuant ([2]), LAB ([5]) to demonstrate that traditional STE training-based quantization is able to
achieve better performance by using MetaQuant.

Due to the difference of the initial full-precision model used, we only report the performance drop
in terms of test accuracy after quantization (the smaller the better). We compare MetaQuant with
ProxQuant using ResNet20/32/44, LAB using its proposed architecture3 on CIFAR10 with all layers
quantized to binary values. As shown in Table.4, MetaQuant shows better performance than both
baselines.

ELQ ([16]) and TTQ ([18]) are compared in 3rd row in Table.4 using ImageNet datasets. Although
over-performance, ELQ is a combination of a series of previous quantization methods and tricks
on incremental quantization. MetaQuant focuses more on how to improve STE-based training
quantization, without any extra loss and training tricks. TTQ is a non-symmetric ternarization with
{0, α,−β} as ternary points. MetaQuant follows dorefa using a symmetric quantization which leads
to efficient inference.

5.5 MetaQuant Training Analysis

Training of MetaQuant involves computation in training of meta quantizer. To analyze the additional
training time, training time per iteration as for MetaQuant using MultiFC and DoReFa with STE
using ResNet20 in CIFAR10 (Intel Xeon CPU E5-1650 with GeForce GTX 750 Ti). MetaQuant
costs 51.15 seconds to finish one iteration of training while baseline method uses 38.17s. However,
In real deployment meta quantizer is removed, MetaQuant is able to provide better test performance
without any extra inference time.

6 Conclusion

In this paper, we propose a novel method (MetaQuant) to learn the gradient for penetration of the
non-differentiable quantization function in training-based quantization by a meta quantizer. This
meta network is general enough to be incorporated into various base models and can be updated using
the loss of the base models. We propose 3 types of meta quantizer and show that the meta gradients
generated through these modules are able to provide better convergence speed and final quantization
performance, under different forward quantization functions and optimization methods.

3(2x128C3)-MP2-(2x256C3)-MP2-(2x512C3)-MP2-(2x1024FC)-10FC

9

Acknowledgement

This work is supported by NTU Singapore Nanyang Assistant Professorship (NAP) grant
M4081532.020, and Singapore MOE AcRF Tier-2 grant MOE2016-T2-2-06.

Reference
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom

Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information Processing Systems, pages 3981–3989,
2016.

[2] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators. In International Conference of Learning Representation, 2019.

[3] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision
by half-wave gaussian quantization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5918–5926, 2017.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

[5] Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. In
International Conference of Learning Representation, 2017.

[6] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, volume 1, page 3, 2017.

[7] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in neural information processing systems, pages 4107–4115,
2016.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference of Learning Representation, 2015.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[10] Cong Leng, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural network: Squeeze
the last bit out with admm. In AAAI Conference on Artificial Intelligence, 2017.

[11] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. International Workshop on
Efficient Methods for Deep Neural Networks, Advances in Neural Information Processing
Systems, 2016.

[12] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In Proceedings of the European Conference on Computer Vision,
pages 722–737, 2018.

[13] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pages 525–542. Springer, 2016.

[14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[15] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network
quantization: Towards lossless cnns with low-precision weights. In International Conference of
Learning Representation, 2017.

10

[16] Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen. Explicit loss-error-aware quantization
for low-bit deep neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9426–9435, 2018.

[17] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[18] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In
International Conference of Learning Representation, 2016.

11

	Introduction
	Related Work
	Problem Statement
	Meta Quantization
	Generation of Meta Gradient
	Training of Meta Quantizer
	Design of Meta Quantizer
	Algorithm and Implementation Details

	Experiment
	Experiment Setup
	Experimental Results and Analysis
	Empirical Convergence Analysis
	Performance Comparison with Non-STE Training-based Quantization
	MetaQuant Training Analysis

	Conclusion

